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Comparative Pharmacokinetics and
Subacute Toxicity of Di(2-ethylhexyl)
Phthalate (DEHP) in Rats and Marmosets:
Extrapolation of Effects in Rodents to Man
by Christopher Rhodes,* Terry C. Orton,t lona S. Pratt,*
Peter L. Batten,* Harold Bratt,* Steven J. Jackson,* and
Clifford R. Elcombe*

Certain phthalate esters and hypolipidemic agents are known to induce morphological and biochemical
changes in the liver of rodents, which have been associated with an increased incidence of hepatocellular
tumors in these species. There is evidence that hypolipidemic agents do not induce these effects in either
subhuman primates or man. The oral and intraperitoneal administration of di(2-ethylhexyl) phthalate
(DEHP) to the marmoset monkey at doses up to 5 mmole DEHP/kg body weight/day for 14 days did not
induce morphological or biochemical changes in the liver or testis comparable with those obtained in rats
given the same amount of DEHP. In the marmoset, the excretion profile of [14C]-DEHP following oral, IP,
and IV administration and the lower tissue levels of radioactivity demonstrated a considerably reduced
absorption in this species compared to the rat.
The urinary metabolite pattern in the marmoset was in many respects qualitatively similar to but quan-

titatively different from that in the rat; the marmoset excreted principally conjugated metabolites derived
from w - 1 oxidation. The pharmacokinetic differences between these two species indicate that the tissues
of the marmoset are exposed to a level of DEHP metabolites equivalent to the complete absorption of a dose
of Ca. 0.1 to 0.25 mmole DEHP/kg body weight/day without significant toxicological effects. These exposure
levels are at least 100-fold greater than the worst estimates of incidental human exposure (ca. 0.0015 mmole/
kg/day). They are comparable with the human therapeutic dose of many hypolipidemic drugs (ca. 0.15 mmole/
kg/day), a dose at which it is claimed that there is an absence of morphological or biochemical changes to
human or subhuman primate liver. The evidence suggests that in some nonrodent species the hepatocellular
and testicular response to DEHP is considerably less than that in rodents and is dose-dependent.

Introduction
Di(2-ethylhexyl) phthalate (DEHP) and di(2-ethyl-

hexyl) adipate (DEHA) are considered to be of low acute
toxicity in a variety of animal species including man.
However, repeat, oral administration of DEHP at high
doses to rodent species produced biochemical and mor-
phological changes in the liver (1) and testis (2). Recently
DEHP was reported to induce liver tumors in F344 rats
and B6C3F1 mice and DEHA in B6C3F1 mice in 2-year
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feeding experiment at maximally tolerated doses,
whereas several other substances related to phthalic acid
did not (3). Previous carcinogenicity studies on various
phthalate esters had not shown similar effects at lower
dose levels, but their validity has been questioned (4).
Recent studies have confirmed an absence of covalent
binding of DEHP and DEHA with DNA (5), which in
conjunction with other negative short-term tests for mu-
tagenicity gives additional support for the alternative hy-
pothesis of reactive oxygen produced by the, persistent
proliferation of liver peroxisomes (6) as the initiator of
the neoplastic transformation of liver cells. A critical fac-
tor in extrapolating from rodents to man is whether these
effects occur in other species (7). Studies with the hy-
polipidemic drug ciprofibrate in several species showed
peroxisome induction to be a dose-dependent rather than
a species-specific phenomenon (8). A marked reduction



RHODES ET AL.

in hepatic peroxisomal response has been observed in the
Syrian hamster compared to the rat with DEHP (9), and
similar reduced hepatic responses have been reported for
the hypolipidemic agents clobuzarit (10) and clofibrate (11)
in the subhuman primate species, the marmoset.
A preliminary report of a long-term chronic toxicity

study of clofibrate in the marmoset at dose levels which
produced hepatocellular tumors in the rat has, after 7
years, provided no evidence of hepatocellular carcinoma
in this subhuman primate species (12).
A lack of peroxisome induction in human liver biopsies

removed from patients receiving therapeutic doses of hy-
polipidemic agents has also been reported (13). Because
of the absence or reduced biochemical and morphological
response in primate livers following exposure to hypoli-
pidemic drugs, we have studied the pharmacokinetics and
subacute effects ofDEHP in male and female marmosets.

Experimental
Materials
[14C]-DEHP and [14C]-MEHP, both uniformly la-

beled in the phenyl ring were synthesized by the Petro-
chemical and Plastic Division Imperial Chemical Indus-
tries Billingham, UK, to greater than 99% purity DEHP
was obtained from British Petroleum Chemicals, Hull
Works, North Humberside, UK. The purity was deter-
mined by gas chromatography to be 99.7%. The mass
spectrum was identical with that of a library specimen.
All other reagents were Analar (analytical) grade where
possible.

Animals
Adult male and female Wistar-derived albino rats (130-

190 g body weight, between 6 and 8 weeks old) of the
Alderley Park Specific Pathogen-Free strain (Alpk/Ap)
were housed in suspended stainless steel wire mesh
cages. The animals were fed throughout the studies with
a standard rat PCD diet (BP Nutrition, Witham, Essex)
and allowed tap water ad libitum. Adult male and female
marmosets (Callithrix jacchus), 250-400 g body weight,
12-18 months old for the oral studies and 450 g, 24 months
old, for the intraperitoneal study, were bred at Imperial
Chemical Industries, Pharmaceuticals Division (Alderley
Park, Cheshire, UK). Animals were fed a daily meal of
Mazuri Primate diet, fruit malt bread, vitamin supple-
ments of Vitetrin (E.R. Squibb and Sons Ltd.) and Be-
max (Glaxo Ltd.) each given twice weekly in the diet.
Water was allowed ad libitum.

Toxicity Studies
Groups of ten male and ten female rats were used for

the studies with a period of 6 days acclimatization. Male
and female rats were each given single oral doses of
DEHP (2000 mg/kg body weight) in corn oil (10 mL/kg)
daily for 14 consecutive days. Control animals received

corn oil only (10 mL/kg). The animals were weighed each
day prior to dosing in order to determine the daily dose
level. Groups of five male and five female marmosets were
used for the oral studies, and five male marmosets for
the IP toxicity studies, with 7 days acclimatization prior
to dosing. Each was given single oral gavage doses of
DEHP (2000 mg/kg) daily for 14 consecutive days. Con-
trol animals received corn oil only (2 mL/kg). For the IP
studies each animal received daily a single IP dose of
1000 mg/kg DEHP as a 50% (w/v) DEHP corn oil for-
mulation for 14 consecutive days. Rats and marmosets
were killed by inhalation of excess anesthetic. Immedi-
ately after death, blood was withdrawn from each animal
by cardiac puncture; each animal was examined exter-
nally and by dissection for macroscopic abnormalities.
Liver, kidneys, testes, and brain were weighed, and sec-
tions of selected tissues were taken for microscopic ex-
amination; samples of liver were also taken for biochem-
ical analysis.

Pharmacokinetic Studies
Animals were housed in glass metabolism cages,

equipped for the complete collection of urine and feces.
Animals received approximately 20 to 25 ,uCi 14C-DEHP/
kg.

In the multiple dose studies 14C-DEHP was admin-
istered orally daily for 14 days. Blood samples were taken
at specific times on day 1 and day 14. Tissue samples
were removed 24 hr after the last of 14 daily doses. Urine
and feces were collected for 24-hr periods following
administration on days 5 and 14.

In the single-dose studies, male marmosets received
14C-DEHP by the IV (100 mg/kg), IP (1000 mg/kg) or
oral (100 and 2000 mg/kg) routes. Urine and feces were
collected at 24-hr intervals for up to 7 days. Residual
tissue levels were determined at 7 days.

In separate studies, male marmosets were orally dosed
with either 50 ,uCi 14C-DEHP/kg or 50 pLCi 14C-mono-2-
ethylhexyl phthalate (MEHP)/kg, both at 0.25 mmole/kg
(equivalent to 100 mg DEHP or 70 mg MEHP/kg). Urine
was collected at intervals and used for the qualitative
and quantitative determination of the metabolite profile
by GC and GC-MS.

Hepatic Enzyme Activity
Liver was homogenized in four volumes of 0.25 M su-

crose/5 mM Tris-HCI (pH 7.4). The liver homogenate was
then fractionated into a large particulate fraction (nuclei,
mitochondria, peroxisomes, and lysosomes), a microso-
mal fraction, and cytosol. Several parameters were meas-
ured in the relevant subcellular preparations. Only the
following are reported: catalase (15); microsomal cyto-
chrome P-450 and cytochrome b5 (16); microsomal ethox-
ycoumarin-O-deethylation (17) and lauric acid hydroxy-
lation (18); CN-insensitive palmitoyl CoA oxidation (19)
and a-glycerophosphate dehydrogenase (20).
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Plasma Clinical Chemistry
Plasma triglyceride and cholesterol were measured as

previously described (14).

Microscopy
Light Microscopy. Liver (left caudate and papillary

lobes from the rat and right median and papillary lobes
from the marmoset), kidney (left), pituitary, and testes
were fixed in buffered formol saline, embedded in paraffin
wax, and 5.5 ,um sections stained with hematoxylin and
eosin.
Electron Microscopy. Sections of the liver (right me-

dian lobe from the rat, right median and left lobes from
the marmoset) were fixed in modified Karnovsky's mixed
formaldehyde, gluteraldehyde fixative, and 1 mm slices
postfixed in 1% buffered osmium tetroxide, dehydrated
in graded acetones and embedded in Araldite resin (Ciba
Geigy Ltd). Sections (1 jim) were stained with toluidine
blue and used to select suitable areas for electron mi-
croscopy. Ultrathin sections (70-90 nm) stained with ur-
anyl acetate and lead citrate were assessed visually, and
micrographs recorded at x 24,900 magnification, for mor-
phometric analysis of peroxisomes using a test grid of
320 points (21).

Preparation of Samples for Determination
of Radioactivity

Urine. Urine samples were diluted to a standard vol-
ume (25 mL) with water, and duplicate aliquots were
diluted to 1.0 mL with methanol prior to scintillation
counting.
Feces, Tissues, and Blood. Fecal samples were

freeze-dried overnight, and duplicate samples (approxi-
mately 50 mg) were combusted in a 306B Tri-Carb sam-
ple oxidizer (Packard Instruments Limited). Tissues, ho-
mogenized with an equal weight of water, and samples
of blood (60-320 mg) absorbed on to cellulose pads, were
combusted as above.

Measurement of Radioactivity
Radioactivity was determined by liquid scintillation

counting ofprepared samples by use ofa Tri-Carb 460CD
microprocessor-based liquid scintillation spectrometer
(Packard Instruments Limited), automatically corrected
for background and counting efficiencies (external stan-
dard quench correction curve data with 226Ra as a gamma
source). Samples were counted to a statistical precision
of 1%.

Results and Discussion
Subacute Toxicity
Most of the published data on DEHP has been derived

from studies with rodents. This study has compared the
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FIGURE 1. Body weights and organ weights: (O) rat; (Q) marmoset.
The asterisk (*) denotes significantly different from control, p <
0.05.

effects of the subacute administration of DEHP in a ro-
dent species (rat) with those in a primate species (mar-
moset). The two best documented effects of DEHP in
the rat are testicular atrophy and hepatomegaly. The
present data demonstrate a reduction in body weight
gain, testicular atrophy, and hepatomegaly in rats after
14 days oral administration at a high dose level of DEHP
(2000 mg/kg/day) (Fig. 1). Although marmoset body
weight was affected following administration of DEHP,
changes in organ weight were not detected at high dose
levels of DEHP (orally 2000 mg/kg/day or IP 1000 mg/
kd/day). Induction of hepatomegaly following chronic
DEHP administration has been previously studied in the
dog (less affected than rat) and guinea pig (absence of
effect) (25). While the rat, mouse, guinea pig, and ferret
were susceptible to testicular atrophy following exposure
to DEHP and the related plasticizer dibutyl phthalate
(DBP), the hamster was resistant to their gonadal effects
(2).

Hepatic peroxisomes (Fig. 2) and peroxisomal enzymes
(Fig. 3) were induced in both male and female rats,
whereas the hypotriglyceridemic and hypocholesteremic
effects (Fig. 4) were only observed in male but not, female
rats. The induction of peroxisomes and peroxisomal en-
zyme activity and the hypolipidemic effects were not de-
tected following oral or IP administration of DEHP to
the marmoset. The data from this present study indicate
that the interrelationship of hepatomegaly, peroxisomal
induction, and hypolipidemia is complex and appears to
be dose- and species-dependent. Although, in the mar-
moset, there was an increase in catalase activity, there
was not an increase in cyanide-insensitive acyl oxidase,
the peroxisome marker enzyme. Hypolipidemic agents
that induce peroxisomal activity in rats showed species
selectivity for this effect and notably, no peroxisome pro-
liferation was detected in the marmoset (10). However,
other nonrodents, including primates, have been shown
to be responsive to the peroxisome-inducing activity of
the potent hypolipidemic drug. ciprofibrate (8).
This study has indicated the induction of a rat hepatic

cytochrome P-450 with high activity towards the C-11
and C-12 hydroxylation of lauric acid. A 10-fold increase
in this activity was seen, compared to a 2- to 3-fold in-
duction of ethoxycoumarin-O-deethylation. The induction
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FIGURE 2. Quantitation of peroxisomes. Values are mean ± SD. The asterisk (*) denotes significantly different from control, p < 0.05.
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FIGURE 3. Liver biochemistry: (a) hepatic microsomal enzyme activ-
ities of (left to right) ethoxycoumarin-O-deethylation, lauric acid
hydroxylation, cytochrome PA450, and cyetochrome B5 in the rat
and marmoset; (b) enzyme activities of 15,000g liver fraction to (left
to right) CN-insensitive palmnitoyl CoA oxidation, a-glycerophos-
phate dehydrogenase, and catalase. The asterisks (*) denote sig-
nificantly different from control, p< 0.05.
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FIGURE 4. Clinical chemistry of (left to right) urea, glucose, ALP,
A:T, albumin, cholesterol, and triglyceride in (O) the rat and (2)
the marmoset. Statistical significance relative to control: (*) p<
0.05; (**) p < 0.01; (***) p < 0.001.

of a microsomal protein of molecular weight 56,000 was
observed following DEHP administration to rats. Similar
observations have been reported following the treatment
of rats with various peroxisomal proliferation hypolipi-
demic agents (18). While the significance of the induction
of this hydroxylation is not yet known, one may speculate
that it may have a prominent role in the biotransformation
of the alkyl side chains of DEHP
Mammalian peroxisomes contain a number of oxidases,

one of prime importance being the cyanide-insensitive
acyl CoA oxidation system which has been shown to be
markedly elevated in rodents but not marmosets following
exposure to DEHP. In contrast to the mitochondrial I8-
oxidation system, the peroxisomal system is not coupled
to oxidative phosphorylation and generates H202 which
is detoxified by the peroxisomal enzyme, catalase. Cat-
alase is much less induced than the acyl CoA oxidases
generating H202, so that an increased steady-state cel-
lular concentration of H202 may occur. It is possible that
elevated levels of H202 in hepatic cells may lead to genetic
damage similar to that observed in cultured mammalian
cells (26). Such changes in rodent hepatic cells following
the subacute administration of high doses ofDEHP may
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be of particular importance to the increased incidence of
hepatocellular carcinomas and adenomas in mice and rats.
The absence of evidence for interaction of DEHP with
rodent hepatic DNA (5) and the high dose required to
induce tumors suggests that DEHP belongs to a class of
indirect nongenotoxic (epigenetic) carcinogens. The
mechanism of such carcinogenicity may be associated
with species-specific perturbation of cellular biochemis-
try (27). Consequently, the absence of such effects in the
marmoset may be indicative that, as with hypolipidemic
drugs, the induction of peroxisomes by DEHP is species-
and/or dose-dependent. Therefore, the hepatocellular tu-
mors in rodents will not occur at dose levels that do not
produce the necessary perturbation of cellular biochem-
istry, and a threshold dose for the tumorigenicity will
exist.

Disposition of DEHP in the Marmoset
Subacute Administration. In both rat and marmo-

set, multiple oral administrations of 14C-DEHP at 2000
mg/kg. body weight/day did not modify the proprotion of
dose excreted in the urine or feces in either male or female
animals. Compared with a single dose, the marmoset
excreted 2% of the administered dose in the urine com-
pared with about 50% excreted by the rat (Fig. 5). The
levels of DEHP or its metabolites in the tissues of the
marmoset 24 hr after the fourteenth and final dose of
[14C]-DEHP were between one-fifth and one-tenth of the
levels in the rat at the corresponding time point (Fig. 6),
confirming the reduced bioavailability of DEHP in the
marmoset.
Absorption andRoutes ofExcretion Following a Sin-

gle Dose ofDEHP The cumulative excretion in urine
and feces following IV administration to marmosets
shows approximately 40% of the dose excreted in urine
and approximately 20% in the feces (Fig. 7). This indi-
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cates an approximate 2:1 split between the urinary and
unreabsorbed biliary (fecal) routes of excretion in the
marmoset. A much smaller proportion of the dose (14%)
was excreted following IP administration, with the uri-
nary and biliary (fecal) excretion in a similar 2:1 ratio.
This suggests that following oral administration at the
100 mg/kg dose the 30% excretion in the urine probably
reflects 45% absorption of the dose with a 15% excretion
in feces via the biliary circulation. A large proportion of
both parenterally administered DEHP doses (IV and IP)
remained within the marmoset at 7 days. Following IV
administration 28% of the dose remained in the lungs
with minimal levels in other tissues, which probably re-
flects entrapment of the insoluble DEHP from the IV
emulsion by the alveolar capillaries. Following IP admin-
istration, 85% of the dose remained as unabsorbed
DEHP in the peritoneal cavity with minimal amounts in
the tissues. The residual levels in the tissues at 7 days
following oral administration of 2000 mg DEHP/kg were
about one-fifth of the IV dose of 100 mg DEHP/kg (Fig.
8). Contamination of tissue by DEHP remaining in the
peritoneal cavity prevents any interpretation of the tissue
levels following IP administration. When the data are
expressed as milligrams of DEHP equivalents excreted
in urine (Table 1) at the larger oral dose, there is a
reduction in the absorption of DEHP from the intestinal
tract of the marmoset. The amount excreted in urine is
more consistent to that expected for a 150 to 200 mg/kg
dose. While the IP route provides an alternative route
for parenteral administration, it also provides only a lim-
ited absorption of material equivalent to a 300 mg/kg
dose. A comparison ofthe blood level profiles for the three
routes of administration confirms the dose-dependent ab-
sorption of DEHP in the marmoset (Fig. 9). A 20-fold
increase in the oral dose from 100 to 2000 mg/kg showed
only a 2-fold increase in the amount absorbed.
There is a significant difference in absorption of large
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FIGURE 5. Excretion profile following multiple oral administration in the rat and marmoset.
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doses of DEHP between rat and marmoset. At an oral
dose of 2000 mg/kg, marmoset tissue is exposed to
DEHP and its metabolties at an approximately equiva-
lent level to that expected for rat tissues following an oral
dose of 200 mg/kg to the rat. The IP route provides a
slightly increased bioavailability to that of the oral route,
but it also shows dose-dependent absorption. Because of

Rat [
250

the insolubility of DEHP, distribution of large IV doses
is limited by the sequestering effect of lung tissue. The
data suggest that DEHP is not as readily hydrolyzed by
marmoset lipases; therefore, it is not as readily absorbed
by this species. The activity ofmarmoset lipases appears
to be much less than that of the rat (B. G. Lake, personal
communication).
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FIGURE 6. Blood and tissue levels following multiple oral administration of DEHP Levels of radioactivity expressed as jig equivalents of DEHP

24 hr after the final dose of 14C-DEHP
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FIGURE 7. Proportion of dose in marmoset exereta and tissues 7 days
after administration of 14C-DEHE

FIGURE 8. Tissue levels of DEHP and its metabolites 7 days after
administration of 14C-DEHP in the marmoset.
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FIGURE 9. Marmoset blood levels of DEHP and its metabolites: (0)
oral, 200 mg/kg (42 mg excreted/24 hr), AUC8 = 123; (U) oral, 100
mg/kg (20 mg excreted/24 hr), AUG8 = 58; (A) IP, 1000 mg/kg (20
mg excreted/24 hr), AUC8 = 49; (0) IV, 100 mg/kg (14 mg excreted/
24 hr), AUC8 = 56.

Table 1. Amount of dose excreted after administration of 14C.
DEHP to male marmosets (N = 3).

Dose,
mg/kg

100
1000
100

2000

Amount excreted, mg
Urine Feces Total

38 18 56
104 37 141
29 26 55
74 1674 1758

Biotransformation of DEHP by the
Marmoset

It has been established that DEHP is hydrolyzed by
nonspecific pancreatic lipases to its monoester, MEHP,
which is subsequently oxidized probably by enzymes of
the w, w-1 and ,-oxidation pathways to a variety of me-
tabolites (22,24) (Fig. 10). Species differences in metab-
olism of DEHP have been reported (28-30).

In general there are only quantitative differences
rather than qualitative differences in the metabolite pro-
files of the phase 1 oxidations between species. However,
species other than the rat appear to excrete conjugated
metabolites in the urine. In the marmoset, the urinary
metabolite profiles following oral administration of a sin-
gle dose of either [14C]-DEHP or [14C]-MEHP were sim-
ilar (Table 2). The majority of the metabolites were ex-
creted in mainly conjugated forms, probably
glucuronides. This excretion of the conjugated metabo-
lites is similar to other primate species, but dissimilar
to the rat. In addition there were more w-1 oxidation
products excreted by the marmoset compared to the rat
(Table 3).
From this study, the metabolism ofDEHP by the mar-

moset is comparable to that of other primates (30) and
shows the same characteristic differences from the rat
as other primate species.
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FIGURE 10. Metabolism of DEHP in the rat.
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Table 2. In vivo metabolism of DEHP and MEHP in male marmosets following the oral administration of a single dose at 0.25
mmole/kg of either [14C]-MEHP or [14C]-DEHP.

Percentage of metabolite in 0-8 hr urine fraction
DEHP MEHP

Metabolite noa. Hydrolyzed % Conjugated Hydrolyzed % Conjugated
MEHP 11 17±3 30 19±3 42

w-oxidation
Hexyl chain 1 2 ± 0.2 (36) 7 ± 10 42

5 7±1 63 6±2 63
10 1±0.4 44 1±0.4 47
12 0 0 0 0

Ethylchain 2 1 ±0.2 0 1 ±0.5 0
4 3±2 23 3±2 33
7 7±3 66 6±4 69

Total w oxidation 22 ± 1 54 24 ± 3 55

w-1 oxidation
Hexyl chain 3 2±1 0 2±1 0

6 9±2 80 8±2 80
9 52±2 77 47± 11 78
8 1±0.2 11 4±5 14

Total w-1 oxidation 64 ± 2 75 61 ± 11 76

Percentage of dose
recovered in
urine fraction 17 ± 4 24 ± 13

aSee Fig. 10.

Table 3. Metabolism of DEHP excreted in urine folowing single
dose.

Metabolite Rmole/kg body weight
Peroxisomal

Rata Marmosetb induction'
DEHP dose administered

pumole/kg 125 250 Activity
mg/kg (50) (100) in vitro

Metabolites
MEHP Zero 11 +

w-Oxidation products 16 14
w-1 Oxidation products 11 34 +

Excreted as conjugate(s) Zero 33
Total excreted 30 60
'24 hr.
b8 hr.
'Rat hepatocytes; + = induces; - = does not induce.

Conclusion
The data presented in this paper have demonstrated

that the subacute effects of DEHP, such as hepatic per-
oxisome proliferation, are less in the marmoset than in
the rat when a large dose ofDEHP (5 mmole DEHP/kg/
day) is administered orally. The bioavailability of DEHP
in the marmoset at high doses is limited. However, at
the tissue levels obtained in the marmoset there was no

marked biochemical or morphological change observed.
At comparable tissue levels following oral administration
of200 mg/kg to the rat, there are reports of such changes
(31). Although the marmoset metabolizes DEHP, it shows
the same characteristic differences from the rat as do
other primate species. The marmoset appears to be less
sensitive to the effects of peroxisome proliferators such
as DEHP and the hypolipidemic drugs. These metabolic
differences may explain this species difference. This is
of particular interest because peroxisome proliferation
has not been observed in liver biopsies obtained from
humans who had received prolonged clinical treatment,
with hypolipidemics (ca. 0.15 mmole hypolipidemic/kg/
day) (32-34). This dose level is known to produce per-
oxisome proliferation acutely in the rat (in the range 0.1
to 0.25 mmole hypolipidemic/kg/day) (31). If the mar-
moset reflects more accurately the response in man, then
the low levels of DEHP to which man is incidentally ex-
posed (ca. 0.0015 mmole DEHP/kg/day) should not be of
toxicological significance with regard to hepatocellular
carcinoma.
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